Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.617
Filtrar
1.
Environ Microbiol Rep ; 16(2): e13253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575147

RESUMO

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera. The highest level of specificity was observed in root endophytic and ectomycorrhizal associations, while the lowest was found in arbuscular mycorrhizal associations. The majority of ectomycorrhizal fungal species showed a preference for one of their partner trees, primarily at the plant genus level. Specialist ectomycorrhizal fungi were dominant in belowground communities in terms of species richness and relative abundance. Moreover, all tree genera (and occasionally species) demonstrated a preference for certain fungal groups. Partner specificity was not related to the rarity of fungi or plants or environmental conditions, except for soil pH. Depending on the partner tree genus, specific fungi became more prevalent and relatively more abundant with increasing stand age, tree dominance, and soil pH conditions optimal for the partner tree genus. The richness of partner tree species and increased evenness of ectomycorrhizal fungi in multi-host communities enhanced the species richness of ectomycorrhizal fungi. However, it was primarily the partner-generalist fungi that contributed to the high diversity of ectomycorrhizal fungi in mixed forests.


Assuntos
Micorrizas , Micorrizas/genética , Árvores/microbiologia , Filogenia , Biodiversidade , Fungos/genética , Plantas/microbiologia , Solo , Microbiologia do Solo
2.
New Phytol ; 242(4): 1691-1703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659111

RESUMO

Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.


Assuntos
Biodiversidade , Florestas , Micobioma , Micorrizas , Raízes de Plantas , Especificidade da Espécie , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Raízes de Plantas/microbiologia
3.
Environ Int ; 186: 108611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603812

RESUMO

Research has shown that forest management can improve the post-drought growth and resilience of Qinghai spruce in the eastern Qilian Mountains, located on the northeastern Tibetan Plateau. However, the impact of such management on the tree-associated phyllosphere microbiome is not yet fully understood. This study provides new evidence of positive forest management effects on the phyllosphere microbiome after extreme drought, from the perspectives of community diversity, structure, network inference, keystone species, and assembly processes. In managed Qinghai spruce forest, the α-diversity of the phyllosphere bacterial communities increased, whereas the ß-diversity decreased. In addition, the phyllosphere bacterial community became more stable and resistant, yet less complex, following forest management. Keystone species inferred from a bacterial network also changed under forest management. Furthermore, forest management mediated changes in community assembly processes, intensifying the influence of determinacy, while diminishing that of stochasticity. These findings support the hypothesis that management can re-assemble the phyllosphere bacterial community, enhance community stability, and ultimately improve tree growth. Overall, the study highlights the importance of forest management on the phyllosphere microbiome and furnishes new insights into forest conservation from the perspective of managing microbial processes and effects.


Assuntos
Bactérias , Florestas , Microbiota , Bactérias/classificação , Agricultura Florestal/métodos , Árvores/microbiologia , Picea/microbiologia , Biodiversidade , Secas , Conservação dos Recursos Naturais/métodos
4.
New Phytol ; 242(4): 1614-1629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594212

RESUMO

Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.


Assuntos
Biodiversidade , Carbono , Micorrizas , Nitrogênio , Fósforo , Folhas de Planta , Solo , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Fósforo/metabolismo , Solo/química , Nitrogênio/metabolismo , Carbono/metabolismo , Biomassa , Microbiologia do Solo , Elementos Químicos , Especificidade da Espécie
5.
Mycorrhiza ; 34(1-2): 45-55, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483629

RESUMO

Worldwide urban landscapes are expanding because of the growing human population. Urban ecosystems serve as habitats to highly diverse communities. However, studies focusing on the diversity and structure of ectomycorrhizal communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is an ectomycorrhizal tree thriving in tropical montane forests hosting a high diversity of ectomycorrhizal fungi. Q. humboldtii is planted as an urban tree in Bogotá (Colombia). We studied how root-associated fungal communities of this tree change between natural and urban areas. Using Illumina sequencing, we amplified the ITS1 region and analyzed the resulting data using both OTUs and Amplicon Sequence Variants (ASVs) bioinformatics pipelines. The results obtained using both pipelines showed no substantial differences between OTUs and ASVs for the community patterns of root-associated fungi, and only differences in species richness were observed. We found no significant differences in the species richness between urban and rural sites based on Fisher's alpha or species-accumulation curves. However, we found significant differences in the community composition of fungi present in the roots of rural and urban trees with rural communities being dominated by Russula and Lactarius and urban communities by Scleroderma, Hydnangium, and Trechispora, suggesting a high impact of urban disturbances on ectomycorrhizal fungal communities. Our results highlight the importance of urban trees as reservoirs of fungal diversity and the potential impact of urban conditions on favoring fungal species adapted to more disturbed ecosystems.


Assuntos
Agaricales , Basidiomycota , Micobioma , Micorrizas , Quercus , Humanos , Micorrizas/genética , Ecossistema , Quercus/microbiologia , Biodiversidade , DNA Fúngico/genética , Árvores/microbiologia
6.
Commun Biol ; 7(1): 360, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519711

RESUMO

Root-associated microbes can alleviate plant abiotic stresses, thus potentially supporting adaptation to a changing climate or to novel environments during range expansion. While climate change is extending plant species fundamental niches northward, the distribution and colonization of mutualists (e.g., arbuscular mycorrhizal fungi) and pathogens may constrain plant growth and regeneration. Yet, the degree to which biotic and abiotic factors impact plant performance and associated microbial communities at the edge of their distribution remains unclear. Here, we use root microscopy, coupled with amplicon sequencing, to study bacterial, fungal, and mycorrhizal root-associated microbial communities from sugar maple seedlings distributed across two temperate-to-boreal elevational gradients in southern Québec, Canada. Our findings demonstrate that soil pH, soil Ca, and distance to sugar maple trees are key drivers of root-associated microbial communities, overshadowing the influence of elevation. Interestingly, changes in root fungal community composition mediate an indirect effect of soil pH on seedling growth, a pattern consistent at both sites. Overall, our findings highlight a complex role of biotic and abiotic factors in shaping tree-microbe interactions, which are in turn correlated with seedling growth. These findings have important ramifications for tree range expansion in response to shifting climatic niches.


Assuntos
Microbiota , Micorrizas , Plântula , Árvores/microbiologia , Micorrizas/fisiologia , Solo
7.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493170

RESUMO

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Assuntos
Micobioma , Carbono , Microbiologia do Solo , Florestas , Árvores/microbiologia , Solo
8.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373845

RESUMO

Community assembly is influenced by environmental niche processes as well as stochastic processes that can be spatially dependent (e.g. dispersal limitation) or independent (e.g. priority effects). Here, we sampled senesced tree leaves as unit habitats to investigate fungal community assembly at two spatial scales: (i) small neighborhoods of overlapping leaves from differing tree species and (ii) forest stands of differing ecosystem types. Among forest stands, ecosystem type explained the most variation in community composition. Among adjacent leaves within stands, variability in fungal composition was surprisingly high. Leaf type was more important in stands with high soil fertility and dominated by differing tree mycorrhizal types (sugar maple vs. basswood or red oak), whereas distance decay was more important in oak-dominated forest stands with low soil fertility. Abundance of functional groups was explained by environmental factors, but predictors of taxonomic composition within differing functional groups were highly variable. These results suggest that fungal community assembly processes are clearest for functional group abundances and large spatial scales. Understanding fungal community assembly at smaller spatial scales will benefit from further study focusing on differences in drivers for different ecosystems and functional groups, as well as the importance of spatially independent factors such as priority effects.


Assuntos
Ecossistema , Micobioma , Microbiologia do Solo , Florestas , Árvores/microbiologia , Solo , Fungos/genética
9.
Mycorrhiza ; 34(1-2): 95-105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183463

RESUMO

Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associated Oreomunnea mexicana (Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of the ITS2 (fungi) and 16S rRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.


Assuntos
Microbiota , Micorrizas , Micorrizas/fisiologia , Solo , RNA Ribossômico 16S , Florestas , Árvores/microbiologia , Microbiologia do Solo , Fungos/genética
10.
J Hazard Mater ; 465: 133149, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056267

RESUMO

The microbiome in the air-phyllosphere-soil continuum of urban greenspaces plays a crucial role in re-connecting urban populations with biodiverse environmental microbiomes. However, little is known about whether plant type affects the airborne microbiomes, as well as the extent to which soil and phyllosphere microbiomes contribute to airborne microbiomes. Here we collected soil, phyllosphere and airborne microbes with different plant types (broadleaf tree, conifer tree, and grass) in urban parks. Despite the significant impacts of plant type on soil and phyllosphere microbiomes, plant type had no obvious effects on the diversity of airborne microbes but shaped airborne bacterial composition in urban greenspaces. Soil and phyllosphere microbiomes had a higher contribution to airborne bacteria in broadleaf trees (37.56%) compared to conifer trees (9.51%) and grasses (14.29%). Grass areas in urban greenspaces exhibited a greater proportion of potential pathogens compared to the tree areas. The abundance of bacterial pathogens in phyllosphere was significantly higher in grasses compared to broadleaf and conifer trees. Together, our study provides novel insights into the microbiome patterns in air-phyllosphere-soil continuum, highlighting the potential significance of reducing the proportion of extensively human-intervened grass areas in future urban environment designs to enhance the provision of ecosystem services in urban greenspaces.


Assuntos
Microbiota , Solo , Humanos , Parques Recreativos , Plantas , Árvores/microbiologia , Bactérias , Poaceae
11.
Glob Chang Biol ; 30(1): e17030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010627

RESUMO

Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait-based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon-specific and community-wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition-induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait-based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.


Assuntos
Micorrizas , Micorrizas/fisiologia , Árvores/microbiologia , Nitrogênio , Solo , Microbiologia do Solo , Bactérias , Carbono
12.
Microbiol Spectr ; 11(6): e0356223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37971233

RESUMO

IMPORTANCE: Compared with the phyllosphere, bacteria inhabiting bark surfaces are inadequately understood. Based on a preliminary pilot study, our work suggests that microbial populations vary across tree bark surfaces and may differ in relation to surrounding land use. Initial results suggest that stemflow, the water that flows along the bark surface, actively moves bacterial communities across a tree. These preliminary findings underscore the need for further study of niche microbial populations to determine whether there are connections between the biodiversity of microbiomes inhabiting corticular surfaces, land use, and hydrology.


Assuntos
Casca de Planta , Árvores , Projetos Piloto , Árvores/microbiologia , Biodiversidade , Bactérias/genética
13.
BMC Microbiol ; 23(1): 350, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978432

RESUMO

The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.


Assuntos
Microbiota , Micobioma , Picea , Humanos , Picea/microbiologia , Secas , Noruega , Microbiota/genética , Árvores/microbiologia , Água
14.
Planta ; 258(6): 112, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935872

RESUMO

MAIN CONCLUSION: Extracellular traps in the primary root of Pinus densiflora contribute to root-associated bacterial colonization. Trapped rhizobacteria induce the production of reactive oxygen species in root-associated, cap-derived cells. Ectomycorrhizal (ECM) woody plants, such as members of Pinaceae and Fagaceae, can acquire resistance to biotic and abiotic stresses through the formation of mycorrhiza with ECM fungi. However, germinated tree seedlings do not have mycorrhizae and it takes several weeks for ectomycorrhizae to form on their root tips. Therefore, to confer protection during the early growth stage, bare primary roots require defense mechanisms other than mycorrhization. Here, we attempted to visualize root extracellular traps (RETs), an innate root defense mechanism, in the primary root of Pinus densiflora and investigate the interactions with root-associated bacteria isolated from ECM and fine non-mycorrhizal roots. Histological and histochemical imaging and colony-forming unit assays demonstrated that RETs in P. densiflora, mainly consisting of root-associated, cap-derived cells (AC-DCs) and large amounts of root mucilage, promote bacterial colonization in the rhizosphere, despite also having bactericidal activity via extracellular DNA. Four rhizobacterial strains retarded the mycelial growth of a pathogenic strain belonging to the Fusarium oxysporum species complex in dual culture assay. They also induced the production of reactive oxygen species (ROS) from host tree AC-DCs without being excluded from the rhizosphere of P. densiflora. Applying three Paraburkholderia strains, especially PM O-EM8 and PF T-NM22, showed significant differences in the ROS levels from the control group. These results reveal the indirect contributions of rhizobacteria to host root defense and suggest that root-associated bacteria could be a component of RETs as a first line of defense against root pathogens in the early growth stage of ECM woody plants.


Assuntos
Armadilhas Extracelulares , Micorrizas , Pinus , Micorrizas/genética , Espécies Reativas de Oxigênio , Raízes de Plantas , Bactérias , Árvores/microbiologia
15.
Nat Microbiol ; 8(12): 2406-2419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973868

RESUMO

Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.


Assuntos
Micorrizas , Populus , Árvores/microbiologia , Ecossistema , Populus/microbiologia , Biodiversidade
16.
PLoS One ; 18(11): e0294633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019803

RESUMO

In Ethiopia, Pinus radiata and Pinus patula are extensively cultivated. Both plantations frequently serve as habitats for edible fungi, providing economic and ecological importance. Our study aims were: (i) to investigate how plantation age and tree species influence the variety of edible fungi and sporocarps production; (ii) to determine edaphic factors contributing to variations in sporocarps composition; and (iii) to establish a relationship between the most influencing edaphic factors and the production of valuable edible mushrooms for both plantation types. Sporocarps were collected weekly from permanent plots (100 m2) established in 5-, 14-, and 28-year-old stands of both species in 2020. From each plot, composite soil samples were also collected to determine explanatory edaphic variables for sporocarps production and composition. A total of 24 edible species, comprising 21 saprophytic and three ectomycorrhizal ones were identified. Agaricus campestroides, Morchella sp., Suillus luteus, Lepista sordida, and Tylopilus niger were found in both plantations. Sporocarp yields showed significant variation, with the highest mean production in 28-year-old stands of both Pinus stands. Differences in sporocarps variety were also observed between the two plantations, influenced by factors such as pH, nitrogen, phosphorus, potassium, and cation exchange capacity. Bovista dermoxantha, Coprinellus domesticus, and A. campestroides made contributions to the variety. The linear regression models indicated that the abundance of specific fungi was significantly predicted by organic matter. This insight into the nutrient requirements of various fungal species can inform for a better plantation management to produce both wood and non-wood forest products. Additionally, higher sporocarps production in older stands suggests that retaining patches of mature trees after the final cut can enhance fungal habitat, promoting diversity and yield. Thus, implementing this approach could provide supplementary income opportunities from mushroom sales and enhance the economic outputs of plantations, while mature trees could serve as a source of fungal inoculum for new plantations.


Assuntos
Agaricales , Micorrizas , Pinus , Árvores/microbiologia , Ecossistema , Florestas , Pinus/microbiologia , Solo
17.
Mycorrhiza ; 33(5-6): 321-332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702798

RESUMO

Alnus nepalensis and Schima wallichii are native tree species accompanying succession in abandoned agricultural land in the middle mountainous region of central Nepal. To understand how root fungi recover during spontaneous succession, we analyzed the diversity and composition of arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), and total fungi in tree fine roots from three land use types, short-term abandoned land (SA), long-term abandoned land (LA), and regenerated forest (RF) as a reference. Additionally, ECM morphotypes were examined. The results showed different speeds of succession in the studied fungal groups. While the change in the AM fungal community appears to be rapid and LA resembles the composition of RF, the total fungi in the abandoned land types are similar to each other but differed significantly from RF. Interestingly, the relative abundance of Archaeosporaceae followed a trend differing between the tree species (SA < LA in A. nepalensis, but SA > LA in S. wallichii). Unlike AM and total fungi, there was no significant difference in the ECM community of A. nepalensis between land use types, probably due to their low species diversity (9 ECM morphotypes, 31 ECM operational taxonomic units). However, Cortinarius sp. was significantly more abundant in RF than in the other land use types, whereas Alnicola, Tomentella, and Russula preferred young stages. Our results suggest that for both studied tree species the AM fungal succession could reach the stage of regenerated forest relatively fast. In the case of total fungi, because of hyperdiversity and composed of species specialized to a variety of environments and substrates, the transition was expected to be delayed in abandoned land where the vegetation was still developing and the ecosystem was not as complex as that found in mature forests.


Assuntos
Agaricales , Alnus , Micorrizas , Microbiologia do Solo , Florestas , Ecossistema , Árvores/microbiologia , Solo , Fungos
18.
Sci Total Environ ; 902: 166002, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541525

RESUMO

Rock weathering drives both landform formation and soil production/evolution. The less studied biological component of weathering and soil production caused by tree root systems is the main focus of the present study. Weathering by trees, which likely has been important in soil formation since the first trees emerged in the middle and late Devonian, is accomplished through both physical and biological means, like acids excreted by plants and exudates from associated bacterial communities. However, these processes are relatively poorly known. We assessed the impact of tree roots and associated microbiota on the potential level of biological weathering. Three research plots were selected in two sandstone regions in Poland. Two plots were in the Stolowe Mountains (Zlotno, Batorów), a tableland built of Cretaceous sandstones. The third plot (Zegiestów) was in the Sacz Beskidy Mountains, the Carpathians. Soil samples were taken from tree root zones of Norway spruces from predefined sampling positions. Soils from non-tree control positions were also sampled. Soil samples were a subject of laboratory analyses which included the content of Fe and Al (amorphous and labile forms), carbon (C), nitrogen (N), and soil pH. The microbial functional diversity of soil microorganisms was determined using the Biolog (EcoPlate) system. Rock fragments were collected for mineralogical and a subject of optical microscopy and cathodoluminescence analyses in order to examine their mineralogical composition. Significant differences (pHolm-corrected < 0.05) between sample locations were found mostly for the Zegiestów plot: Soils at control positions differed from the crack and bulk soil sample positions in terms of C, N, C/N, and pH. Tree roots were able to develop a great variety of sizes and forms by following the existing net of bedrock discontinuities and hillslope microrelief. They developed along the most accessible surfaces, and caused rockcliff retreat and scree slope formation. These two features can be considered as initial stages of soil production. Trees add to the complexity of the soil system and allow formation of rhizospheric soils, and horizons rich in organic matter which are zones of a high microbial activity. However, as our study shows, rock cracks with roots cannot be considered as zones of microbial weathering. In addition, C content and microbial activity decreases with depth but can stay on a high level along living and dead roots. When entering rock fractures, they change the intensity of biomechanical weathering and soil properties. The highest biological activity of microorganisms was found in the control samples. Overall, tree roots do change the pattern of soil formation and explain the existing pattern of soil chemical properties, microbial activity, and potentially biological weathering intensity, and the intensity of those processes in correlation with root presence varies in space.


Assuntos
Solo , Árvores , Árvores/microbiologia , Solo/química , Microbiologia do Solo , Bactérias , Tempo (Meteorologia)
19.
PeerJ ; 11: e15454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547726

RESUMO

In natural and agricultural systems, the plant microbiome-the microbial organisms associated with plant tissues and rhizosphere soils-has been shown to have important effects on host physiology and ecology, yet we know little about how these plant-microbe relationships play out in urban environments. Here we characterize the composition of fungal communities associated with living leaves of one of the most common sidewalk trees in the city of San Francisco, California. We focus our efforts on endophytic fungi (asymptomatic microfungi that live inside healthy leaves), which have been shown in other systems to have large ecological effects on the health of their plant hosts. Specifically, we characterized the foliar fungal microbiome of Metrosideros excelsa (Myrtaceae) trees growing in a variety of urban environmental conditions. We used high-throughput culturing, PCR, and Sanger sequencing of the internal transcribed spacer nuclear ribosomal DNA (ITS nrDNA) region to quantify the composition and structure of fungal communities growing within healthy leaves of 30 M. excelsa trees from six distinct sites, which were selected to capture the range of environmental conditions found within city limits. Sequencing resulted in 854 high-quality ITS sequences. These sequences clustered into 85 Operational Taxonomic Units (97% OTUs). We found that these communities encompass relatively high alpha (within) and beta (between-site) diversity. Because the communities are all from the same host tree species, and located in relatively close geographical proximity to one another, these analyses suggest that urban environmental factors such as heat islands or differences in vegetation or traffic density (and associated air quality) may potentially be influencing the composition of these fungal communities. These biogeographic patterns provide evidence that plant microbiomes in urban environments can be as dynamic and complex as their natural counterparts. As human populations continue to transition out of rural areas and into cities, understanding the factors that shape environmental microbial communities in urban ecosystems stands to become increasingly important.


Assuntos
Fungos não Classificados , Microbiota , Humanos , Endófitos/genética , Cidades , São Francisco , Temperatura Alta , Plantas/microbiologia , Árvores/microbiologia
20.
Sci Total Environ ; 900: 165868, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37516186

RESUMO

Enhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha-1 yr-1) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany. Non-treated deadwood from the same logs served as control with background N deposition. Our results show that chronically elevated N levels alters deadwood mass loss alongside respiration, enzymatic activities and wood chemistry depending on tree clade and species. In gymnosperm deadwood, elevated N increased mass loss by +38 %, respiration by +37 % and increased laccase activity 12-fold alongside increases of white-rot fungal abundance +89 % (p = 0.03). Furthermore, we observed marginally significant (p = 0.06) shifts of bacterial communities in gymnosperm deadwood. In angiosperm deadwood, we did not detect consistent effects on mass loss, physico-chemical properties, extracellular enzymatic activity or changes in microbial communities except for changes in abundance of 10 fungal OTUs in seven tree species and 28 bacterial OTUs in 10 tree species. We conclude that N deposition alters decomposition processes exclusively in N limited gymnosperm deadwood in the long term by enhancing fungal activity as expressed by increases in respiration rate and extracellular enzyme activity with minor shifts in decomposing microbial communities. By contrast, deadwood of angiosperm tree species had higher N concentrations and mass loss as well as community composition did not respond to N addition.


Assuntos
Magnoliopsida , Microbiota , Fungos , Nitrogênio/análise , Cycadopsida , Florestas , Árvores/microbiologia , Bactérias , Microbiologia do Solo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...